Madshrimps Forum Madness

Madshrimps Forum Madness (https://www.madshrimps.be/vbulletin/)
-   WebNews (https://www.madshrimps.be/vbulletin/f22/)
-   -   Intel And Micron Launch First QLC NAND: Micron 5210 ION Enterprise SATA SSD (https://www.madshrimps.be/vbulletin/f22/intel-micron-launch-first-qlc-nand-micron-5210-ion-enterprise-sata-ssd-176938/)

Stefan Mileschin 22nd May 2018 12:41

Intel And Micron Launch First QLC NAND: Micron 5210 ION Enterprise SATA SSD
 
Intel and Micron are announcing today that their jointly-developed QLC NAND flash memory is now available, and Micron is now shipping the first solid state drive based on QLC NAND: an enterprise SATA drive branded the 5210 ION series. This will join the TLC-based 5200 family as a lower-cost tier with reduced write performance and endurance.

QLC NAND flash memory stores four bits of data per memory cell, providing a 33% capacity boost over three bit per cell TLC NAND, which is now used in almost all SSDs. The downsides are that QLC NAND has lower write endurance on the order of 1000 program/erase cycles, and lower write performance. Both of these are consequences of the difficulty of discriminating between 16 possible voltage levels within a memory cell, as compared to the 8 voltage levels required to store three bits per cell.

The cost reduction brought by QLC NAND is a much-awaited advance for enterprise storage. Most NAND flash manufacturers have started sampling QLC NAND within the past year, generally built on the same 64-layer 3D NAND processes that current-generation TLC NAND uses. Micron has previously shown wafers of 512Gb 64-layer QLC when announcing the addition of QLC to their roadmap, but today they are also announcing a 1Tb 64L QLC part—the first 1Tb memory chip to hit commercial availability. That 1Tb part is organized as four planes that can be processing I/O commands in parallel, compared to two planes for previous Intel/Micron NAND parts. This helps offset most of the performance loss associated with increasing per-die capacity. Thanks to the "CMOS under the array" design of Intel/Micron 3D NAND, the extra peripheral circuitry requried by doubling the number of planes doesn't add much to the overall die size.

https://www.anandtech.com/show/12744...prise-sata-ssd


All times are GMT +1. The time now is 08:34.

Powered by vBulletin® - Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Content Relevant URLs by vBSEO