AMD Demos First Network Function Virtualization on 64-Bit AMD and ARM Technology

@ 2014/10/02
AMD today demonstrated the first network function virtualization (NFV) solution on AMD's 64-bit ARM-based SoC and announced that it is now sampling to AMD's embedded customers. The NFV demonstration is powered by a 64-bit ARM-based AMD Embedded R-Series SoC, codenamed "Hierofalcon," supported with technology from two key ecosystem partners -- Aricent for the networking software stack and Mentor Graphics for embedded Linux and tools. NFV is an innovative solution that simplifies deployment and management for network and telecommunications service providers with a fully virtualized communications infrastructure that helps maximize performance, while working to reduce costs.

At ARM TechCon, AMD specifically showcased the capabilities of an ARM-based NFV solution, virtualizing the functionality of a packet data network gateway, serving gateway, and a mobility management entity. In addition to virtualizing hardware components, AMD showcased a live traffic migration between the ARM-based AMD Embedded R-Series SoC and the x86-based second generation AMD R-Series APU. AMD's ARM-based NFV solution will be especially valuable for telecommunications network infrastructure providers interested in a flexible software-defined networking (SDN) implementation to manage networking services with configurable hardware to help reduce complexity and cost. NFV is the abstraction of numerous network devices such as routers and gateways, to enable relocation of network functions from dedicated hardware appliances to generic servers. With NFV, much of the intelligence currently built into proprietary, specialized hardware is accomplished with software running on general purpose hardware. The resulting solution is a fully virtualized communications infrastructure -- including virtual servers, storage and networks -- that simplifies deployment and management for network and telecommunications service providers. AMD is paving the way for both new and established service providers to design and deploy either x86 or ARM-based NFV infrastructure which meets their performance, cost and complexity requirements.

No comments available.